
Parallel Ray Tracing on the BlueGene/L

Ben Boeckel∗ Artem Kochnev† Abhishek Mukherjee‡ Taro Omiya§

Abstract

While libraries such as Nvidia’s CUDA can greatly optimize the
graphical application, it’s pipeline structure causes inaccuracies to
occur in lighting physics. As such, an efficient, accurate graphical
application is required Ray-tracing can render lightings very accu-
rately, but falls short in efficiency With a massively parallel sys-
tem such as BlueGene/L, however, ray-tracing can be rendered at a
much faster speed.

Keywords: parallel, raytracing, bluegene

1 Introduction

Several attributes about ray-tracing lends itself well to networked
computers such as the Blue Gene/L, regardless of whether it uses
threads or Message Passing Interface (MPI). Each ray in ray-tracing
acts independently from each other, and communication between
each calculation occurs only in the end of tracing. Finally, ray-
tracing can be rendered using the CPU, only.

Through this project, we will prove that it is possible to generate
realistic graphics on a highly parallel system created originally for
scientific uses. The libraries we plan to use is the MPI library for
the Blue Gene/L. The results will be a PPM image file.

The program will be tested using the object models from Advanced
Computer Graphics. Various measurements will be used to test the
performance of our program: the number of processors, numberof
models and texture, number of time rays can bounce, and number
of samples for shadows.

In addition, a few extensions were added to create several filters
similar to those found in image editors such as Adobe Photoshop.
With a little tweaking, we can give graphics a bit of an artistic taste.

2 Related Works

Several papers has already delved into the topic of ray tracing for
highly parallel systems. One notable work is from Benthin and his
work will ray tracing on the Cell processor, most commonly found
in Sony’s Playstation 3. His careful consideration in the architec-
ture of the processor demonstrates the importance of the system’s
structure in calculations. [Benthin et al. 2006]

A more thorough analysis is found in Badouel’s paper, where he
mentions the specific structures, algorithms, and varies strategies to
avoid costly data transfers on the Blue Gene L. He uses schedul-
ing and data managing to most effectively balance each proces-
sors’ workload and minimize latency. Furthermore, careful ways
of avoiding common parallel problems, such as deadlocks, are ad-
dressed from this paper. This will act as the main basis for our
project. [Badouel et al. 1994]

∗e-mail: boeckb@rpi.edu
†e-mail: kochna@rpi.edu
‡e-mail: mukhea2@rpi.edu
§e-mail: omiyat@rpi.edu

3 Parallelism

Ray tracing is inherently a very parallel operation. For each pixel
in the image, the algorithm traces out what will be hit by a ray
coming from the camera, and then tries to figure out what color that
object will be. The work for one pixel on the resulting image is
entirely independent from the work done on another pixel on the
screen. Therefore, it is possible to haveN processors working on
its own pixel and simply joining the resulting colors together to get
a complete image.

While each pixel are rendered sperately, several strategies could
further optimize the ray tracing process. One must consider the
cache, filesystem, and processor structure of the Blue Gene/L to
create an efficient, specialized program. Additionally, one must
intelligently balance each ray tracing process, as they are not of
equal complexity.

3.1 Load Balancing

A couple interesting problems arise when going to multi-scalar pro-
cessors. One important problem is load balancing. Properly us-
ing multiple processors cannot be done unless every processor is
always doing work. Having times where processors have to wait
for another processors results will cause a program’s efficiency to
plummet. Thus work has to be distributed in such a way where each
processor is doing about the same amount of work. There are a few
ways to do this for ray tracing as discussed by [Badouel et al. 1994].
These include things like preprocessing the image into chunks and
distributing it to the processors. However, we felt this early pre-
processing would not make sense for super-scalar architectures like
the Blue Gene/L because it would just take too much time. [Ben-
thin et al. 2006] also discusses several load balancing schemes that
were specifically designed to match the Cell architecture and it’s
limitations in memory.

3.2 Implementation

We decided to go with an algorithm similar to the one from Baduel
et al., However, instead of preprocessing the data, we simply in-
dexed each pixel into a one dimensional array and gave processor
N all pixels,i, such that

i mod N ≡ 0 (1)

The idea behind this would be that each region would be shared
between the processors. Therefore if one region is difficult to com-
pute, all processors should have some share in the region.

4 Filters

In an image editor, a filter is an algorithm that converts the pixel
values to a new pixel to either remove unwanted artifacts or add an
artistic taste to an image. Often, in an image, a pixel is represented
by a red, green, and blue value each corresponding to additive col-
ors in lights. Using these values, we can recalculate and compile a
new image that gives a different impression from the original.

In this case, we created a gray-scale filter and a color-limiting filter
that recalculates the generated pixel value from each ray in the ray-
tracer.



Figure 1: Left image: original image. Right image: overly lit gray
scale image. Bottom image, fixed image

4.1 Gray Scale

Each pixel in a gray scale image is represented, frequently, by a
single gamma value that represents a shade of gray. Finding the
gamma from an RGB value is, incidentally, very simple. We simply
have to find the weighted average of each value:

γ = WrR + WgG + WbB (2)

Where:
1 = Wr + Wg + Wb (3)

One can easily convert this back to the RGB format by setting the
red, green, and blue value equal toγ. It’s worth noting that the
weight values must be carefully chosen, as it represents each color’s
contribution to the image. For example, if we naively give equal
weights to red, green, and blue, we get an overly-lit image seen in
Figure 1.

To create the most acceptable color-to-gray-scale conversion, we
used the weight values from [MathWorks 2009] to get the bottom
image in Figure 1.

Wr = 0.299 (4)

Wg = 0.587 (5)

Wb = 0.114 (6)

4.2 Limiting Color

Many image editors includes an option to posterize an image, ren-
dering a group of near-colored pixels to be shaded in one color.
While our program can not detect neighboring pixels, it can gen-
eralize colors to limited shades by calculating where it fall in the
spectrum of the RGB value.

Limiting the color spectrum is fairly easy. We divide the color spec-
trum evenly to the number of shades the user wants. If a pixel’s

Figure 2: Left image: full red scale image. Right image: red scale
image limited to 3 shades.

Figure 3: Above: red, green, and blue are limited to 3 shades, for
a total of 27 colors.

value falls under any of the middle sections, we set it to a pre-
computed value corresponding to that portion. The only exception
is towards the two ends, where they will be set to either minimum
or maximum color value.

The basic algorithm can be described as follows:

Let D be the quotient of maximum color value,M , divided byn
number of shades.

LetS = M/(n − 1).

For indexi between 0 andn

If color red (r) is less thani × D, setr = S × i

Repeat for green (g) and blue (b).

5 Conclusion

5.1 Parallelism

Our parallel algorithm worked decently well except when the com-
putation for pixels is absurdly larger than the computation for other
pixels. For example, if the number of reflective bounces is set to
sixty, the computation becomes completely weighted against all the
processors that hold these pixels. Specifically for the Blue Gene/L,
this is an incredibly bad circumstance. The Blue Gene/L devotes
all it’s resources to multiple processors rather than processor speed.
We encountered multiple times when it seemed like the computer
entered into a state of deadlock, two or more processors are waiting
for input from another processor in the cycle so no one can do work,
because the processors just could not get any of the work done. It
was believed to be deadlock because the same computation could
run on a simple 2GHz Intel Core 2TM laptop in a reasonable amount
of time. The difference was that the laptop could process a ray that



Figure 4: Time to render number of bounces on a Blue Gene/L. The
image size used was 1024x1024.

bounces 100 times, while the 700MHz PowerPC processor in the
Blue Gene/L could not.

5.2 Performance

A few changes in stats were compared. For example, the time it
took to complete the ray tracing images in the Blue Gene/L are
shown in Figure 4 and Figure 5. Figure 4 shows a typical exponen-
tial growth in time as the number of bounces calculated increases.
This is expected, as more bounces increases the number of times a
ray recurses.

Figure 5 is more unusual. One would expect the performance be-
havior in increasing the number of pixels would cause linear growth
in time, since a ray is issued for each pixel. This is not the case,
however. There is a sudden increase in performance when the num-
ber of pixels is increased to 2560000 units, before it continues off
with its usual linear growth. We believe this burst of performance
may come from the nature of how Blue Gene/L was built. Since
2560000 is a power of 2, it makes it simple for the system to make
binary computations.

For comparison, we decided to test our algorithm on a typical ma-
chine in figure 6. While the lower statistical values makes it slightly
difficult to compare to the Blue Gene/L, it’s quite clear that raising
these stats to Figure 4 would be much, much slower. The number of
processors, and the much higher OS jitter caused by other daemon
jobs causes the typical desktop performance to be much lower than
the Blue Gene/L.

5.3 Filters

On filters, we were mostly satisfied with the gray scale filtering.
The limited colors also faired well to our expectations. However,
no pixel value had the ability to reference from their consecutive
neighbors. Since our filters had to be solely based on a single pixel
value, it created some unnecessary noise from very similar colors,
causing the image to look artificial. If we could devise a way to
read neighboring pixel values, we could implement a more intelli-
gent, visually pleasing filters to create artistic work. In addition, the
ability to format and re-map colors based on an external file could
add more expression to our limited and inflexible algorithm.

Figure 5: Time to render number of pixels on a Blue Gene/L. The
number of bounces was 30 and the number of shadow bounces was
100.

Figure 6: Time to render number of bounces on a Intel Core 2 Duo,
1.8GHz, 2 GB RAM, customized desktop. The image size used was
200x200, and the number of shadow bounces was 10.

Figure 7: Time to render 4096 x 4096 resolution image with 30
bounces



Figure 8: Time to render 4096 x 4096 resolution image with 5
bounces

6 Further Works

Additionally considerations could have been made to our project,
including the parallel side and the filter side.

6.1 Parallelism

Due to time constraints, we made a basic copy off of our homework
3 from Advanced Computer Graphics written in C++. The obvious
problem with this is that C++ doesn’t lend itself well to paralleliz-
ing. An easy optimization method would have been to convert the
C++ files to the equivalent, yet less complex C versions. Unfortu-
nately, such a solution tend to be difficult and time-consuming.

Another problem we have is that only the first processor writes
the image. Since our load balancing strategy forces us to use
MPI Gather, we could have used the combination of MPIScatter
and the asynchronous MPIFile iwrite at to have all processors
write on the file instead, creating a more efficient file writing pro-
cess.

We’ve also found many dynamic calculations when the program
was still intended to use OpenGL. While all of the OpenGL was
stripped in favor of MPI, several unnecessary process that was sup-
posed to use interactive keyboard and mouse coordinate may have
been left-over. With more time, we could have hunted down and
simplified these process to a constant function.

Finally, memory management was the biggest problem. With more
time, we could have found ways to better optimize the memory
uses. Additionally, startegies to avoid using objects should be con-
sidered, if we intended to keep the files as C++.

6.2 Filters

Our original intention for integrating ”filters” in the ray tracing pro-
gram was to turn a ray tracer to a non-photorealistic renderer. We
meant to convert the colors bouncing off of each object to different
solid shades. However, time did not permit us to do this process,
and therefore, a simpler approach was taken.

As previously mentioned, a more intelligent filtering process could
have been used. If the filters were made as a seperate executeable
that processes an image as input and generate a new, stylized im-
age, it would have been easier to find neighboring pixels. Again,

since this was not our original intention, this process was not im-
plement. We may consider using such a strategy, however, on a
normal desktop environment rather than the Blue Gene/L.

7 Citation

• Distributing data and control for ray tracing in parallel
This paper discusses the data structures to be used to min-
imize data transfer in a parallel ray tracer. This will be an
important consideration for us, as we begin writing our pro-
gram for the Blue Gene/L. Although ray tracing is a relatively
simple algorithm to implement in a parallel fashion, the only
way to get proper efficiency out of the program is to manage
the data, and the workload, properly. We hope this paper will
relieve some of the burden of creating various parallel data
structures to be used. This paper also discusses the common
deadlocks that could occur in a ray tracing algorithm, which
we also have to avoid.[Badouel et al. 1994]

• Ray tracing on the cell processor This paper discusses the
special considerations that need to be taken into account for
developing a ray tracer on a parallel algorithm. The architec-
ture they were building for, the Cell, is a very different ar-
chitecture from the Blue Gene/L that we will be building our
algorithm on. We belove that it will form a good basis to start
from in our discussions about how to create the algorithm on
the Blue Gene/L.[Benthin et al. 2006]

References

BADOUEL, D., BOUATOUCH, K., AND PRIOL, T. 1994. Distribut-
ing data and control for ray tracing in parallel.IEEE computer
graphics and applications 14, 4, 69–77.

BENTHIN, C., WALD , I., SCHERBAUM, M., AND FRIEDRICH, H.
2006. Ray tracing on the cell processor. InIEEE Symposium on
Interactive Ray Tracing 2006, 15–23.

MATHWORKS, 2009. How do i convert my rgb image
to grayscale without using the image processing tool-
box? http://www.mathworks.com/support/
solutions/data/1-1ASCU.html, Apr.


