Project Eris
Test Results

Team Adrastos

June 11, 2009

1 Test Directions

1.1 Unit Testing

We are using Qt’s testing package to test our core data and class structures. Since our first milestone, we
have written new test code every time we program a new data structure or function. Thus, each and every
code are tested immediately after any changes.

1.2 Integration Testing

For every change that we make to the code, we will test this on the current GUI to confirm that it has
the desired effect. For this to work well, we need to document our expectations for code changes. After we
sufficiently document our expectations, we will test the product as a whole to make sure everything works
properly. If an unexpected error occurs any time during the procedure, the code will have to be revised.

1.3 User Acceptance Testing

To confirm from users that our game is both playable and intuitive, we will be asking a number of volunteers
to play with our program. Our test group will mainly consist of RPI students of various degrees, although
many will be computer science majors. The test will be conducted in the following fashion:

1. The user will be provided with the rules and any other information necessary to play the game.
2. The user will play as many games as they like.
3. During the process, record the results for the recording sheet (see Test Results).

4. Once the user finishes the game, we will get the user’s feedback and record their opinions on the
application.

2 Test Results

2.1 Unit Testing

fkkkkkkkk Start testing of TestMatrix s kkokkkkkx
Config: Using QTest library 4.4.0, Qt 4.4.0

PASS : TestMatrix::initTestCase()
PASS : TestMatrix::swap()

PASS : TestMatrix::width()

PASS : TestMatrix::height()

PASS : TestMatrix::at()

PASS : TestMatrix::opequal()

PASS : TestMatrix::opnoteq()

PASS

Totals:

: TestMatrix:

:cleanupTestCase()
8 passed, 0 failed, O skipped

*kxxxkkkk Finished testing of TestMatrix skkkkkkkxk

fkkkkkkkkx Start testing of TestSquareGridBoard s kskkkkkkk
Config: Using (Test library 4.4.0, Qt 4.4.0

PASS
PASS
PASS
PASS
PASS
Totals:

: TestSquareGridBoard::initTestCase()

: TestSquareGridBoard: :vertex_neighbors()
: TestSquareGridBoard: :edge_neighbors ()

: TestSquareGridBoard: :has_index()

: TestSquareGridBoard: :cleanupTestCase()

5 passed, 0 failed, O skipped

*kxxxxkkk Finished testing of TestSquareGridBoard ks kkxkxxx

*fkkkkkkx Start testing of TestSquarePiece s kkxkxkskskk
Config: Using QTest library 4.4.0, Qt 4.4.0

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
Totals:

: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
: TestSquarePiece:
20 passed, O failed, O skipped

:initTestCase()
:flip_vertical()
:flip_horizontal ()
:flip_combined ()
:flip_combined_simultaneous()
:rotate_clockwise()
:rotate_counterclockwise ()
:rotate_twist_1()
:rotate_twist_2()
:flip_and_rotate_clockwise()
:flip_and_rotate_counterclockwise()
:generate_set_1()
:generate_set_2()
:generate_set_3()
:generate_set_4()
:generate_set_5()
:generate_set_6()

:opequal ()

:opnoteq()

:cleanupTestCase ()

fkkkkkkkkx Finished testing of TestSquarePiece s xxskskokkkk

2.2 Integration Testing

e Piece appear on tray: Pass

e Player turn is indicated: Pass

e Piece rotate correctly: Pass

e Piece flip correctly: Pass

e Piece indicate valid moves: Pass

e Piece can be placed on board: Pass

e Piece can not be placed at invalid space: Pass

e Piece returns to tray when no longer in focus: Pass

e Artwork are rendered correctly: Pass

2.3 User Acceptance Testing

Test Description

Pass or Fail

Are the following controls acceptable?

Move piece | Pass
Place piece | Pass
Rotate piece | Pass
Flip piece | Pass
Are the following GUI design decisions intuitive?
Board | Pass
Piece | Pass
Piece Tray | Fuail
Are the following notifications understandable?
Player’s turn | Faul
Valid move | Pass
Invalid move | Pass
Win condition | Fail
Lose condition | Fail
Are the rules comprehensible? | Pass
Are you satisfied with the game? | Fail

Table 1: User Acceptance: Ken Omiya

Test Description | Pass or Fail

Are the following controls acceptable?

Move piece | Pass
Place piece | Fail
Rotate piece | Pass

Flip piece | Pass

Are the following GUI design decisions intuitive?

Board | Pass
Piece | Pass
Piece Tray | Fail

Are the following notifications understandable?

Player’s turn | Fail
Valid move | Pass
Invalid move | Pass
Win condition | Fail
Lose condition | Fail

Are the rules comprehensible? | Pass
Are you satisfied with the game? | Fail

Table 2: User Acceptance: Hana Omiya

Test Description ‘ Pass or Fail

Are the following controls acceptable?

Move piece | Pass
Place piece | Fail
Rotate piece | Fail
Flip piece | Fail

Are the following GUI design decisions intuitive?

Board | Pass
Piece | Pass
Piece Tray | Fail

Are the following notifications understandable?

Player’s turn | Fail
Valid move | Pass
Invalid move | Fail
Win condition | Fail
Lose condition | Fail

Are the rules comprehensible? | Pass
Are you satisfied with the game? | Fail

Table 3: User Acceptance: Mari Omiya

Test Description | Pass or Fail

Are the following controls acceptable?

Move piece | Pass
Place piece | Pass
Rotate piece | Fail
Flip piece | Fail

Are the following GUI design decisions intuitive?

Board | Pass
Piece | Pass
Piece Tray | Fail

Are the following notifications understandable?

Player’s turn | Fuail
Valid move | Pass
Invalid move | Fail
Win condition | Fail
Lose condition | Fail

Are the rules comprehensible? | Fail
Are you satisfied with the game? | Fail

Table 4: User Acceptance: Susumu Omiya

	Test Directions
	Unit Testing
	Integration Testing
	User Acceptance Testing

	Test Results
	Unit Testing
	Integration Testing
	User Acceptance Testing

